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Abstract 

A  current dipole of arbitrary orientation is Imbedded in a 

uniform conductor bounded by infinite parallel insulating planes. 

The potential is the sum of the potentials cue to the parallel and 

perpendicular* components into which the dipole moment is resolved. 

Using the method of images, the potential due to either component 

is the aum of the potentials arising from two infinite uniformly 

spaced collinear arrays of dipoles. 

Mathematically, the problem is to find an approximation to 

the sura of a slowly converging series of positive terms. This is 

done in such a way that the arithmetical work is shortened and the 

relative error is always less than any desired number. Curves are 

given which show how the errors of certain very simple approximations 

depend on position in the f-«ld. Equipotential surfaces are shovm 

for the parallel component. For this case, at distances greater 

than twice the thickness, the equlpotential surfaces are very close 

to the circular cylinders characteristic of a linear dipole of 

uniform density in an unbounded conductor. 
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1. The potential of a current dlpole In an Infinite medium 

If there is a single point source of current in an infinite 

conducting medium, the currant flows radially away from the source 

and its density at a distance r meters is 

T~  —x—s~        amperes per square meter    (1) 

where S is the strength of the source in amperes. The electric 

intensity due to the flow is 

in which o* is the conductivity. The potential at a distance r 

from the source is 

Let the point at which the potential is to be calculated be 

taken as the origin; and let there be a sink of strength S at 

(x, y, z) and a source of equal strength at (x + h, y, z). The 

potential at the origin is 

CO V ~ 4ir<r ( r, r   / 

where 
/^. ~   <,  i\i..1 »**# 

-i 
The function r may be expanded in a Taylor series as 

-{r « -*- +h^r(-V}+ •• • (5) 
giving 

V» -2b v (- JL- .*.       higher powers of h J      (6) 
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the  llir.it  of which  p.s   n   —. O      and 

that    L(Sh)   = Hi   is 

4ir<r rx 

 i^ o^>      ?     -"    UUCii      1    Vt . j, 

(?) 

where 8 la the angle between the pceltlve direction of th3 current 

moment, M, (sink to source), and the vector dr iwn frora dipole to 

field point. The expression (7) for the potential is appropriate 

for the MKS units which *e shall use. 

2•  Dlpole axis parallel to the faces of an Infinite condactlag slab 

Boundary conditions. 

Let the faces of the slab be the planes 2. =? 0  and "£ "•---- 

Let the axis of the dlpole be in the •;• y     dlr*". -tlon and let the 

dipole, of moment M, be on the l    axis at £=^. 

We assume that thore is a nonconducting medium in contact with 

both faces of the  xab. 

On account of symmetry »<e see that 

V = C v'nen < - 0 . (except at y » 0 , z- - H (8) 

and because there can be no current normal tc the boundaries 

rr ~ ° when   Z so *_ .        (Q, 

Let us regard the current density at any point a3 the vec;oi' 

sum of the dlpole current density which would exist in unbounded 

space and the increment to current density due to the presence of 

boundaries.  The latter is finite whi?e the former increases with- 

out limit as we approach the dlpole.  It follows that,over a small 

spherical surface surrounding the dipole,the potential approaches 

that of a dlpole of the same moment in unbounded space as the. 



i\ dii'D of th2 sp'.i-i-e clir.iinlci'.OL-.  Co ".ulucr ti. . iip.icc /;::>:; J  ;;,;. 

"boundary Is this r-phcre -2nd! whose outer bound \r:\33 are oh 2 '\<o 

parallel plane3 and a circular cylinder whose axis is the :•: tu:lc 

and whose radius la infinite.  In thiu apace,  V-^V^" O ' 

and we know the value of the normal derivative of the potential 

over all boundaries.  The potential within is uniquely determined 
(I) 

by these conditions 

The eame conditions are satisfied in an infinite conducting 

medium If there Is an infinite linear array of dipoles cf equi'-l ro'-.eir 

K whose axes are in the positive ;; direction and who3e coordinates 

are 

X=03  y = 03   £ =na :fcb (10) 

where n  Is an integer which assumes all values from r?iru3 infinity 

to plus infinity.  The potential in this case ia a periodic function 

of £ ; but its value between £—o  and j. „ V, is the same as that 

for the single dipole in the slab. 

3.  The potential due to an infinite uniform linear array of dipoles. 

The array (10) may be regarded as two collincar arrays each 

of which has a uniform interval of length a  between its elements. 

One array is displaced with respect to the other along the •£.  axis 

a distance equal to 2b. 

The potential due to one or the other of these arrays is the 

sum of terms of the form 

,.       n cov &*, 
Vw =  ——: rjr (ID 

1.  J. II. Jeans, 'Electricity ar.d Magnotlen'1; &f 18?, 3?" 
Cambridge University ?reyu, 192'>- 



J.;.;~?'J  &nc ,•••;••. -;::..,•...  ;     •:     fcrert    zo   cne    _.. a   j.oie,     An   crab 
I'll 

expression     i      is   fci.a  length of the--vector fron  the    n fiipole n 

to the point   p.; '-y.s) for which the potential is being calculated.; 

and 6* is t:i-_ angle between the axis of the d:\oole and this vector. n - 

In this calculation it is convenient to use a system of coordinates 

in which-the elements-of one array are at 

.X'-c ; Y- 0 ; ; j'*n« (12) 

and, as before, the positive axes of all thedipoles are in the - 

x directions That being the case, 

uji:=i*z+itr<*'-•y3/z "'' (135 

and the length of the projection of this vector on the axis of_-the 

th 
n   dipoie is x.  Therefore, 

C n <6 ' ^S   — 

w    al X     — 

and the potential due to the whole of one array, referred to any 

element of the array as origin, is 

w - EL*~   C      _J  

Inspection of (lo) shows that 

V(x,y,s') « -v(-x>y,2«) (17} 

V(x,y,2'} » VU,-y.zf ) (18) 

V(x,y,2') - V(x,y,-z') {19} 



because (-z - na)  nrj the aant; valu.2 for n - in <y.s (?/•• r^j  1.';L for 

n = -m. 

V(x,y,z') « V(x,y,z' + ir.a); m s any Integer; (20) 

i.e., the function is periodic In z*with period a. 

V(x,y,z' ) = V(x.y.a-z') (21) 

which follows fro.r. (19) and (20), and shows fiat the potential Is 

also symmetrical viith respect to any plane z* =  £r.a. 

The relation between z'  and z is either 

z' = z-b (22a) 

or 

z' = z + b (22b) 

depending on whether we are considering the upper or lower of the 

two uniform arrays.  Thus If (16) Is written 

V =- '(>,y.zO (23) 

we find the potential due to the dlpole in the slab to be 

V1(x.y,z) « V(x.y,z-b) + V(x,y,z+b) (24) 

In particular, 

VI = 2V(x,y,z)       when b = 0 (25) 

Thus we have a formal solution of the problen .  However, the right 

hand side of (16) 13 an infinite series of positive terms; and we 

raust find out how to calculate V In such a way that the relative 

error is known to be within satisfactory bounds. 

/ k.     Summation of  the  3eries   Z~ 
flr > 

00 
jxV/ *• + cnn - tjyjzfa 

We begin by   :ranaforming the  series  30  1..hat  the  summation 

involves only dinenolonleas numbers.     Prora  (:6) 

fix % <26> 



Writing 

the potential becomee 

•o[»r. >-f =Pt 'cT ~  T >  i-i T ri. »r (27) 

(28) 

Sal- I 

;fco. (^-H^rjl* (29) 

in which o^ pA«° and o^ 4- £ -l— . Evidently the series diverges 

when both p and q vanish. 

In order to Investigate the question of convergence, we write 

3 in the forra 

is 

S " ^V)^ + &. Tp^c^jw-*£fi?ztZ0&. 
and observe that 

We see also that 

Since  2 -^1   is convergent, it follows that the series $  is 

uniformly convergent over the range  OJL p /. oo  d^. *. ^ -i— . 

Similarly we can show that all the series formed by termwise partial 

differentiation of S once or twice with respect to any of the vari- 

ables p., p , q are uniformly convergent. 

• 
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Conaider the continuous functions 

i 

«.<*>! 

fr*+t«-y-lK   } "<n)mfc}*+(*+f)*i*> (33) 

in which n it not restricted to integral values but may be any real 

number equal to or greater than unity. When n is an integer, 

u(n), and v(n) assume the same values as the constants un> v . 

Both u(n) and v(n) are monotonic functions of n which approach aero 

as n becomes infinite. Therefore, 

-•"•- -• •- 

: 

K 
UK-, >/ U<*)J" >Uk 

K-I 

Adding these inequalities. 

(3*0 

As k—#oo » the series and the integral both converge, and 

*m (35) 

Subtracting each term of the above inequalities from 2 u„ we get 

(36) 
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m-* 

If  1 y«   be added and subtracted from the middle term, w< 
i 

see that (36) is equivalent to 

(37) 

The geometrical interpretation of (36) is seen in Pig. 1 in which 

the areas of the rectangles (of unit width) are Unj^.i* ©tc. The 

middle term of the inequality is evidently the sum of the areas of 

ell the three-side 1 figures which lie abovs the continuous curve. 

These figures may all be slid to the left, as shown, into the 

rectangle whose height Is u„, and for each portion of the left-hand 

rectangle so occupied there corresponds an unoccupied three-sided 

space to the left of it. Evidently, if "Dn U.Cr\) >o j(»*}£ n**b  the 

u(n) curve is concave upward; and each occupied space in the m 

rectangle is greater than the corresponding unoccupied space. 

Accordingly if 

we have 

or 

«*, > £tim -fZtf l«(»)J» + jru~} >0 
(38) 

when the second derivative is positive over the range of integration. 

Thus (37) shows that in general the relative error in using 

i 

in place of the sum is less than the right hand term of the inequality 
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.,,.   £«. -{z."»,+i«(«)d«} 
X u 
I 

*~   -9T" 

l £U- *-/"(» )d . 
39) 

whereas If the aocve condition or the second derivative is sat.'-rfSed 

(38) shows that the relative errcr in using 

Us £_ u* +J u(v^ ** +- - U 
(**G) 

instead of the sun; is less than the right hand side of 

u. -rt^ 
% V 

•'in) 

The generality and usefulness of (39) and (41) as well a3 the 

elementary character of the deri\av,lon would cause one. to expect, 

that these facts vould be well known and readily available in vhe 

literature of infinite series.  J have not been able to find ;h;m. 

It will be seen that if the derivative terms i*nd the remainder 

are omitted fr-om the formula of ruler and Maclaurin the result e 

the same as (Uo). For the present circumstances the appropriate 

form of the Euler-Maclaurir formula is 

00 

k -1 

where the remainder may be written 

r   r r K 
VI 

M 

in which B and 5 are Bernoulli numbers and periodic Bernoulli 



J 
functions   raspcci ivci.-. 

In   (^2)   a  31 fficier.t  condition  for t> J   fii--jt   cci-v no, .'.e::;   -u 

'-•:.X)  fD- H 
to excccc  the rer ainder,  F,    1f   end  to have    ..he  ca:ie  sign as R,    ,: K *" 1 i." 1 

-.3 that   [)n
rK

c /nj . OnK'"lu (n):>0   • <> £ ,0 ^ 0,j 

2k 
while D u(n) dots not change sign throughout the Interval 

°1 i= n ^- °°   '.  Thus, for exarplc, the error In (UO) is less than 

the first derivat lve term 

z  Mo 

provided Df) u(v ) • On uC*) > 0 - (n >^) 

2 
and Dnii(n) is of uniform rign for all n >   :&. Similarly, if only 

the first derivative term is retained In (^2), the P   .or Is lv.r.s 

than the next teix, .. 

*r O 
provided  that  fci   all  n >   m,   D u(n)  and fl    u(r.)  have-  the  r.am•••  ci'jn —     n n 
and the sign doet not change. 

?k 
If it is only known that D" u(n) dcen not change its cigiv trie 

error *s numerically le?r than tv;lce the first neglected derl':r:.lve 
(2) 

tern, and has the same sign 

The terms oi the series (2S1) diminish v.ith increasing n rv*ct 

rapidly if p is Email.  When p lo large, each cJlpole eontrlbu.>:o '..ens 

potentla3 and the contributions of the dipoles are r.cre nearly orv.jal. 

2.  J. P. Steffersen, Interpolation, p. 1;>3 
The Williams Cc  WilkTKs Co., Baltimore, 192? 

—• 



Furthermore, sire  the distance:; to the circles fc» -:. :.• ..•..:- '}.].:-'.-• 
2   2 

as we vary z , while keeping x -:- y constant, i-"e should expect 

that, with large • aluea of p, the pctentia"1. v;cu.]d be ncsrlv inde- 

pendent of 2'.  These considex'ations tempt one to. use "the jlntsgral 

from minus infinity to infinity in place of the sun and to seek a 

limit to the error committed.  Prom the physical standpoint, using 

the integral for"the sum is equivalent ts_replaeipg the array of 

points with a-conttnuous dipole line of strength il per unit length 

along the 2 axis.  The equipoteiV:.ial surfaces of such a distribution 

are well known to be circular cylinders which all pass through the 

source line and whose axes pass through the x axis pajrallel to the 

z axis. 

Reasoning as we did before to establish43^),  and now allowing 

u to represent the general term without restriction sS the  sign and 

value of n, we have 

JL d, 4. / ) juCn)dn ~5_ % ~  &, «.   ;    ('• 
— 00 

-4 

Subtracting 

f ucn) JM _ jr c/H = a„ e  ; e - 9 - 9, ; •' °k ' 
1 1   »•-»-•     mi 

—00 

The relative error", in using the integral for the sum :1s therefore 

2 1.        - -r 

2j3       /»*       £*f - p'r 



o. r.e c   q   -£    !<'?.,   i'.A  p    .u   r.o--£   co.:.-lic: '.-•.    '.-.   b .•   _ 

unitv,   the  relative  ( va'ar   i?  ap;>ro;<:L~.TH/1V— •       .:•.:;.'    ' ?.   I*. i*j   \ i.'.n 

1   . 

In 0bt.1i.nln5 this llrclt, no account his been take.i of any 

properties of the series except It: sronctone .'• ._• :,"j t :•:••.  T.t :n?£ht 

be supposed that or:^ cjuld establish a'.r:ct};.' ;. :;if;':' . ..::\V, i"r,r 

the error- of the inf'nlte integral by taMing a'jr.oaat a." tha shape 

of the curve.  There are difficulties, hc'evea, ah L •'". "••.!•: 2 11 more 

convenient to determine the enaller error limit by cca.paring the 

infinite integral with the results of a calculation ahijh usep '40) 

or (42). Ve are thus able to find the smallest value of p for v;hich 

the integral will give any desirea accuracy.  S* ice we have 

/ a(-•>) r,n   ~    J:    . 
J p1j (46) 

the potential is oi.--y.iy 

Vi 
) X 

i,Tcr i***)' L) (M) 

1.— • iiven for values of p a^ snail as urlty ch?  error in (47) 

q = 0, 1/2 IF only about 1 per cen'..  While ^+7) can give r.o 

information about the variation of V with q, it greatly shorten? the 

work of plotting ecu.)potentials enc floa lines .;n the plane z! -  0. 

Below rertsin values of p and q, which ciepe.ed or! the required 

accuracy, it is possible to ui<e as the equations of the equlpoten- 

tial surfaces 

t 
1  cosd    . f?*5F;<Vy*%-7.'"-; Z*r#<&..\~) ;'3) 
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for which the streamliner are 

' («*9) 
Thic ir.eano that we ignore all the dipoles except the nearest one. 

The values of p and q below which (US) is good enough are found 

by comparison of (U8) with the results obtained by using (30) 

together with (WO). 

In the foregoing discussion the symbols u(n), v(n) and un, 

vn have been used to distinguish between the two forms which the 

general series tens assumes when n is kept positive. Evidently 

all that has been said about u(n) and uR from (34) to (43) inclu- 

sive applies as well to v(n) and v . n 

5.    Collected explicit formulas for calculating the potential 

(A) VagV?V*     •- r (47) 
Zir<r Cx*+1 > 

This formula does not contain z' .     It is most accurate when the 

distance from the dlpole is large  (Pig.  2). 

(B)       V—   4Tr<r(xt+yt-h£'\)3/<' <48) 

Formula (B) is most accurate when the dirtancu from the dlpole is 

small compared with tne thickness of the slab (Pig. 3). 

(c' V%T?? [I ffhiZYfZ --^-ipr^fA  (jo). 
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Various  limits  for  the rercalnd<.>r  in   (G) 

(111)     0 <L 

This formula and the Euler-Maclavrln formula (D) which follows 

are always applicable. 

<D)   \/= M 1-' 4^^«'   tfcii»vf«-|)fci* +'p't "^fc^J 

•+ -,-!  • .. + _L_ f ""V       +J2£i___ V R !i 

C+2) 

The remainder in (D) satisfies the inequality 

i  • * -i 
^?^^ 

provided (ra-q) > 1.202p. 

6. The Electric Field 

The aeries which result from termwise differentiation of tre 
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S 3erlos with respect to p^ p2. and q are uniformly convent. 

The order of differentiation and summation may. therefore, be 

Inverted, and we have 

ap, ~ ^' nT-o.    --o- 3* 
Hr-Oe 

i§- * -3^£ t. (51) 

^_= 3 £ <»-Otn (52) 

Using (28), the electric intensities are therefore 

E„= _i*_ = - u- <&-«-few fc#+s>&^%-*>53> 

- Oo 

(55) •£    4-rr^ra-   «  ~ 

In the region in which the approximation formula («*7> is 

accurate enough, the electric intensities become 

Z^T1        6 Ziro-r* lT<rr
% 

(56) 

K«-^>-^-*7^ 
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r'M \ 
S^LiX- sin a4  r ±1--   . £.& 7 ZTTQ-f * -TTO'a* fQ 

Formulas   (56)-(58)   are applicable when p  Is   large  enough.     In   ;has 
-1 il 222 

three equations *p 18 tan   /* ana r  Is x  + y . 

Near oneugh to the origin one nay use tne approximation given 

in (48) ana obtain 

£„^-   ; (? = x "-y -<-*• J ,-50) 
/°   z~r<jf> 

r\ 3 

In (59) and (60) the angle 6    is not the convention:.! poi^r 

distance of spherical polar coordinates.  It is measured between the 

x direction and tho direction of the field point. 

Between the near and f-r reglonc„ the above approximations are 

not good enough and the fields oust be computed In some other way 

euch as Is shown in {53), (5*0 and 55). The series   21 Si 
0% — o» 

and  SI (n""^»)"tn converge more rapidly than the series for the 

potential; and methods like those used for the ootential may be used 

for calculating the sums Kith any desired accuracy. 

7. Dlpo?.e >>xi: normal to the faces 

Let the dipole racmei't, N, br <n *he z direction.  Using the 

method of Images, wo find the potential v ithln the slab to be the 

same as that due to two oppositely directed infinite coiiinecr 

arrays 'whose elements are at 

;; JI 0, y « 0 , z'    => na; (2 5 z-b) 

and 

r =• 0, y « 0, z"  » na; (tw ~ z+b) 



The potential due vo vhr 1 Ai- 3 'r r.rray, v:J".c^e nonsn'c:.; are lr: tno 

positive 2 direction, is 

w   _ JV_   ? __2 ^  
V0)  -fTHT  ^.^X^y*"* (*'-n^*$v* 

A/      5    ^-^         • (« '= 0(6l) 

and that due to the other array, the moments of whose elements are 

In the negative z direction, is 

x/ N    <r    (n-%") .(c,,,-z"\ v(-} = JT^} ^Tpffc^r71 5 ^ = ~^ (62) 

Hence the total potential of the dipole io 

Evidently V. vanishes everywhere If b * C, a/2. We nay write the 

suaa in (6l), (62) aa follows: 

£  ff>k<»-l)Z}*  " -£ [P ^-y}^ (64) 
Co oo 

where S Is the sum which appears in the potential of the parallel 

component. 

8.  Numerical data 

Pig. 2 3hows how the relative error of formula A depends on 

p and q. The ordinate is, of course, not the actual relative error 



because thie i.un-bor '.s  unattainable.  Tue number plotted a&ainnt; 

p. with q r.8 parameter, is 100(VC- V' ) /VQ  in v;hlch an upper limit 

of the error *»f V«; JS found from (C,lli), is kept less than 10$ 

of I V, - V 1 .  Thus the sign of the plotted ordinate is always 

the same as that of the actual relative error.  The magnitude Is 

greater than that of the relative error when V ~ V Z. 0. When 

V„ - V > 0, it is possible that the ordlnatca of the curves may 
>-   A * 

be a little less than the relative error.  The eubBcrlpts of V 

used here refer to the working formulae (A) to (n) . 

In Pig. 3 we show a similar measure of the relative error in 

using formula B which is plotted agaln3t p for various values of q. 

The ordinate is 100(V - V\ )/V,,.  In this case the error limit of 

V„, calculated by means of iC,l) is alwayu less than 1%  of 

lvc -
V

BI • 
It is unnecessary to exhibit equlpotentlal curves of the 

parallel component for p greater than about 1.0 or 1.5 because 

Kig. 2 shows that the equlpotentlal surfaces, p.S - k (a constant), 

are very accurately represented by circular cylinders whose axes, 

parallel to the z axis, pass through the point, (l/k, 0), and whose 

radius is l/k. 

The nature of the equlpotentlal surfaces of the parallel com- 

ponent In the region 0 £, p £.1,  In part of which computation by 

formula C 1J necessary, is shown by means of their curves of 

interoectlon with the planes q » 0, 1/4, 1/2 in Pigs. M-, 5, 6. 

Near the origin the data of Fig. 3 enable us to use the simple 

formula B. The parameters attached to the individual curves are 

the values of the dimenslonless number p S (see equation 28) from 



'..":1:1c i en.: K">L;-;K.' ;•.".   \.:.~j  be ub '. \r'_d b;, ;.iU~_. •i.lpj.y ::.t-, j; :•/ .•'•7i*&. 

The d.°.ta oT I ir;s. •';•, t>. '^u 6 .'.re not in error bv . :oro thin tv;o 

pel' cent.  No eqoipotential earfacec have been plotted .for the 

perpendicular conpenen*". 

I an indebted to Mrs. Loie Edelstein for doir.fe all the 

numerical '.ccrlc and for verifying part of the analysis. 
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Pig. h      Intersections of equl4>otentlal surfaces with the 
plane q - 0. Horizontal dipole. 
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Pig. 5  intersections of equlpotentlal surfaces with the 
plane q » 1/4.  Horizontal dlpole. 

/2 
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Fig. 6  Intersections of equipotentlal surfaces with the 
plane q • 1/2.  Horizontal dlpole. 
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